perm filename TH1.PRF[226,JMC] blob
sn#005396 filedate 1972-07-09 generic text, type T, neo UTF8
AXIOM TRANS
(∀ X) (∀ Y) (∀ Z) (X=Y∧Y=Z⊃X=Z)
AXIOM SYM
(∀ X) (∀ Y) (X=Y⊃Y=X)
AXIOM REFLEX
(∀ X) (X=X)
AXIOM BIGINTER
(∀ X) (ISSET X∧(∀ Y) (YεX⊃ISSET Y)⊃ISSET BIGINTER X∧(∀ Z) (Zε
BIGUNION X≡(∀ Y) (YεX⊃ZεY)))
AXIOM BIGUNION
(∀ X) (ISSET X∧(∀ Y) (YεX⊃ISSET Y)⊃ISSET BIGUNION X∧(∀ Z) (Zε
BIGUNION X≡(∃ Y) (YεX∧ZεY)))
AXIOM DIFFSET
(∀ X) (∀ Y) (ISSET X∧ISSET Y⊃ISSET (X-Y)∧(∀ Z) (ZεX-Y≡ZεX∧¬ (ZεY)))
AXIOM FNDEF
(∀ FF) (∀ U) (∀ V) (ISSET U∧ISSET V∧ISSET FF∧FFCONTAINEDUPRODUCTV∧(∀
X) (XεU⊃(∃ Y) (YεV∧X.YεFF))∧(∀ X) (∀ Y) (∀ Z) (XεU∧YεV∧X.YεFF∧X.ZεFF
⊃Y=Z)⊃(∃ F) (FεU → V∧(∀ X) (XεU⊃X.α(F,X)εFF)))
AXIOM EQFN
(∀ U) (∀ V) (∀ F) (∀ G) (FεU → V∧GεU → V⊃(F=G≡(∀ X) (XεU⊃α(F,X)=α(G
,X))))
AXIOM APPLY
(∀ F) (∀ X) (∀ U) (∀ V) (FεU → V∧XεU⊃α(F,X)εV)
AXIOM POWERSET
(∀ X) (∀ Y) (ISSET X∧ISSET Y⊃ISSET X → Y)
AXIOM CONTAIN
(∀ U) (∀ V) (UCONTAINEDV≡(∀ X) (XεU⊃XεV))
AXIOM PAIR
(∀ X) (∀ Y) (∀ U) (∀ V) (X.Y=U.V≡X=U∧Y=V)
AXIOM CARTESIAN
(∀ X) (∀ Y) (∀ Z) (ZεXPRODUCTY≡(∃ U) (∃ V) (UεX∧VεY∧Z=U.V))
AXIOM CARTSET
(∀ X) (∀ Y) (ISSET X∧ISSET Y⊃ISSET (XPRODUCTY))
AXIOM INTER
(∀ X) (∀ Y) (∀ Z) (ZεXINTERSECTIONY≡ZεX∨ZεY)
AXIOM INTERSET
(∀ X) (∀ Y) (ISSET X∧ISSET Y⊃ISSET (XINTERSECTIONY))
AXIOM UNIONAX
(∀ X) (∀ Y) (∀ Z) (ZεXUNIONY≡ZεX∨ZεY)
AXIOM UNIONSET
(∀ X) (∀ Y) (ISSET X∧ISSET Y⊃ISSET (XUNIONY))
AXIOM UNITSET
(∀ X) (∀ Y) (YεUNITSET X≡Y=X)
AXIOM NULL1
(∀ X) ¬ (XεNULLSET)
AXIOM NULLSET
ISSET NULLSET
AXIOM EXTENSIONALITY
(∀ U) (∀ V) (ISSET U∧ISSET V⊃(∀ X) (XεU≡XεV)⊃U=V)
AXIOM PLUSS
(∀ X) (∀ Y) (XεI0∧YεI0⊃(Y=0⊃X+Y=X)∧(¬ (Y=0)⊃X+Y=SUCC X+PRED Y))
AXIOM INDUCTION
(∀ U) (UCONTAINEDI0∧0εU∧(∀ X) (XεU⊃SUCC XεU)⊃U=I0)
AXIOM SP
(∀ X) (XεI0∧¬ (X=0)⊃X=SUCC PRED X)
AXIOM PS
(∀ X) (XεI0⊃X=PRED SUCC X)
AXIOM SN0
(∀ X) (XεI0⊃¬ (SUCC X=0))
AXIOM PRED
(∀ X) (XεI0∧¬ (X=0)⊃PRED XεI0)
AXIOM INT0
0εI0
AXIOM SUCC
(∀ X) (XεI0⊃SUCC XεI0)
AXIOM INTSET
ISSET I0
SCHEMA COMPREHENSION
(PRED PP) (∀ UU) (ISSET UU⊃(∃ WW) (ISSET WW∧(∀ XX) (XXεWW≡XXεUU∧PP
XX)))
PROOF ONE
1: (∀ UU) (ISSET UU⊃(∃ WW) (ISSET WW∧(∀ XX) (XXεWW≡XXεUU∧(∀ X) (
XεI0⊃SUCC X+XX=SUCC (X+XX))))) BY SCHEMA(COMPREHENSION,(λ Y) (∀ X) (
XεI0⊃SUCC X+Y=SUCC (X+Y)))
2: ISSET I0⊃(∃ WW) (ISSET WW∧(∀ XX) (XXεWW≡XXεI0∧(∀ X) (XεI0⊃
SUCC X+XX=SUCC (X+XX)))) BY US(1,I0)
3: ISSET I0 BY AXIOM INTSET
4: (∃ WW) (ISSET WW∧(∀ XX) (XXεWW≡XXεI0∧(∀ X) (XεI0⊃SUCC X+XX=
SUCC (X+XX)))) BY MP(2,3)
5: ISSET A∧(∀ XX) (XXεA≡XXεI0∧(∀ X) (XεI0⊃SUCC X+XX=SUCC (X+XX))~
) BY US(4,A)
6: ISSET A BY AE(5,1)
7: (∀ XX) (XXεA≡XXεI0∧(∀ X) (XεI0⊃SUCC X+XX=SUCC (X+XX))) BY AE(
5,2)
8: 0εA≡0εI0∧(∀ X) (XεI0⊃SUCC X+0=SUCC (X+0)) BY US(7,0)
9: 0εI0 BY AXIOM INT0
10: 0=0 BY AXIOM(REFLEX,0)
11: XεI0∧0εI0⊃(0=0⊃X+0=X)∧(¬ (0=0)⊃X+0=SUCC X+PRED 0) BY AXIOM(
PLUSS,X,0)
12: XεI0⊃X+0=X BY TAUT(XεI0⊃X+0=X,9,10,11)
13: (∀ X) (XεI0⊃X+0=X) BY UG(12,X)
14: XεI0 BY ASSUMPTION
15: X+0=X BY MP(12,14) ASSUMING (14)
16: SUCC X=SUCC X BY AXIOM(REFLEX,SUCC X)
17: SUCC X=SUCC (X+0) BY REPR(16,15,2) ASSUMING (14)
18: SUCC XεI0⊃SUCC X+0=SUCC X BY THEOREM(P0,SUCC X)
19: SUCC X+0=SUCC X∧SUCC X=SUCC (X+0)⊃SUCC X+0=SUCC (X+0) BY
AXIOM(TRANS,SUCC X+0,SUCC X,SUCC (X+0))
20: XεI0⊃SUCC X=SUCC (X+0) BY DED(17,14)
21: XεI0⊃SUCC XεI0 BY AXIOM(SUCC,X)
22: XεI0⊃SUCC X+0=SUCC (X+0) BY TAUT(XεI0⊃SUCC X+0=SUCC (X+0),21
,20,19,18)
23: (∀ X) (XεI0⊃SUCC X+0=SUCC (X+0)) BY UG(22,X)
24: 0εA BY TAUT(0εA,9,8,23)
25: YεA BY ASSUMPTION
26: YεA≡YεI0∧(∀ X) (XεI0⊃SUCC X+Y=SUCC (X+Y)) BY US(7,Y)
27: (∀ X) (XεI0⊃SUCC X+Y=SUCC (X+Y)) BY TAUT((∀ X) (XεI0⊃SUCC X
+Y=SUCC (X+Y)),25,26) ASSUMING (25)
28: SUCC XεI0⊃SUCC SUCC X+Y=SUCC (SUCC X+Y) BY US(27,SUCC X) ASSU~
MING (25)
29: SUCC XεI0∧SUCC YεI0⊃(SUCC Y=0⊃SUCC X+SUCC Y=SUCC X)∧(¬ (SUCC
Y=0)⊃SUCC X+SUCC Y=SUCC SUCC X+PRED SUCC Y) BY AXIOM(PLUSS,SUCC X,
SUCC Y)
30: YεI0⊃SUCC YεI0 BY AXIOM(SUCC,Y)
31: SUCC YεI0 BY TAUT(SUCC YεI0,30,25,26) ASSUMING (25)
32: YεI0⊃¬ (SUCC Y=0) BY AXIOM(SN0,Y)
33: YεI0 BY TAUT(YεI0,25,26) ASSUMING (25)
34: XεI0⊃SUCC X+SUCC Y=SUCC SUCC X+PRED SUCC Y BY TAUT(XεI0⊃SUCC
X+SUCC Y=SUCC SUCC X+PRED SUCC Y,29,33,30,32,21) ASSUMING (25)
35: YεI0⊃Y=PRED SUCC Y BY AXIOM(PS,Y)
36: Y=PRED SUCC Y BY MP(35,33) ASSUMING (25)
37: XεI0⊃SUCC X+SUCC Y=SUCC SUCC X+Y BY REPR(34,36,1) ASSUMING (2~
5)
38: XεI0∧SUCC YεI0⊃(SUCC Y=0⊃X+SUCC Y=X)∧(¬ (SUCC Y=0)⊃X+SUCC Y=
SUCC X+PRED SUCC Y) BY AXIOM(PLUSS,X,SUCC Y)
39: XεI0⊃X+SUCC Y=SUCC X+PRED SUCC Y BY TAUT(XεI0⊃X+SUCC Y=SUCC
X+PRED SUCC Y,38,33,31,32) ASSUMING (25)
40: XεI0⊃X+SUCC Y=SUCC X+Y BY REPR(39,36,1) ASSUMING (25)
41: X+SUCC Y=SUCC X+Y BY MP(14,40) ASSUMING (14 25)
42: SUCC (X+SUCC Y)=SUCC (X+SUCC Y) BY AXIOM(REFLEX,SUCC (X+SUCC
Y))
43: SUCC (X+SUCC Y)=SUCC (SUCC X+Y) BY REPL(42,41,2) ASSUMING (14~
25)
44: XεI0⊃SUCC (X+SUCC Y)=SUCC (SUCC X+Y) BY DED(43,14) ASSUMING (~
25)
45: SUCC XεI0 BY MP(14,21) ASSUMING (14)
46: SUCC SUCC X+Y=SUCC (SUCC X+Y) BY MP(45,28) ASSUMING (14 25)
47: SUCC X+SUCC Y=SUCC SUCC X+Y BY MP(14,37) ASSUMING (14 25)
48: SUCC (X+SUCC Y)=SUCC (SUCC X+Y) BY MP(14,44) ASSUMING (14 25)~
49: SUCC X+SUCC Y=SUCC X+SUCC Y BY AXIOM(REFLEX,SUCC X+SUCC Y)
50: SUCC X+SUCC Y=SUCC SUCC X+Y BY REPL(49,47,2) ASSUMING (14 25)~
51: SUCC X+SUCC Y=SUCC (SUCC X+Y) BY REPL(50,46,1) ASSUMING (14 2~
5)
52: SUCC X+SUCC Y=SUCC (X+SUCC Y) BY REPR(51,48,1) ASSUMING (14 2~
5)
53: XεI0⊃SUCC X+SUCC Y=SUCC (X+SUCC Y) BY DED(52,14) ASSUMING (25~
)
54: (∀ X) (XεI0⊃SUCC X+SUCC Y=SUCC (X+SUCC Y)) BY UG(53,X) ASSUMI~
NG (25)
55: SUCC YεI0∧(∀ X) (XεI0⊃SUCC X+SUCC Y=SUCC (X+SUCC Y)) BY AI(
31,54) ASSUMING (25)
56: SUCC YεA≡SUCC YεI0∧(∀ X) (XεI0⊃SUCC X+SUCC Y=SUCC (X+SUCC Y))~
BY US(7,SUCC Y)
57: SUCC YεA BY TAUT(SUCC YεA,56,55) ASSUMING (25)
58: YεA⊃SUCC YεA BY DED(57,25)
59: (∀ Y) (YεA⊃SUCC YεA) BY UG(58,Y)
60: XεA⊃SUCC XεA BY US(59,X)
61: (∀ X) (XεA⊃SUCC XεA) BY UG(60,X)
62: ACONTAINEDI0≡(∀ X) (XεA⊃XεI0) BY AXIOM(CONTAIN,A,I0)
63: YεA⊃YεI0 BY TAUT(YεA⊃YεI0,26)
64: (∀ Y) (YεA⊃YεI0) BY UG(63,Y)
65: XεA⊃XεI0 BY US(64,X)
66: (∀ X) (XεA⊃XεI0) BY UG(65,X)
67: ACONTAINEDI0 BY TAUT(ACONTAINEDI0,62,66)
68: ACONTAINEDI0∧0εA∧(∀ X) (XεA⊃SUCC XεA)⊃A=I0 BY AXIOM(
INDUCTION,A)
69: A=I0 BY TAUT(A=I0,68,67,24,61)
70: YεI0≡YεI0∧(∀ X) (XεI0⊃SUCC X+Y=SUCC (X+Y)) BY REPL(26,69,1)
71: YεI0⊃(∀ X) (XεI0⊃SUCC X+Y=SUCC (X+Y)) BY TAUT(YεI0⊃(∀ X) (Xε
I0⊃SUCC X+Y=SUCC (X+Y)),70)
72: YεI0 BY ASSUMPTION
73: (∀ X) (XεI0⊃SUCC X+Y=SUCC (X+Y)) BY MP(72,71) ASSUMING (72)
74: XεI0⊃SUCC X+Y=SUCC (X+Y) BY US(73,X) ASSUMING (72)
75: YεI0⊃XεI0⊃SUCC X+Y=SUCC (X+Y) BY DED(74,72)
76: XεI0∧YεI0⊃SUCC X+Y=SUCC (X+Y) BY TAUT(XεI0∧YεI0⊃SUCC X+Y=
SUCC (X+Y),75)
77: (∀ X) (∀ Y) (XεI0∧YεI0⊃SUCC X+Y=SUCC (X+Y)) BY UG(76,Y,X)
THEOREM P0
(∀ X) (XεI0⊃X+0=X)
THEOREM TH1
(∀ X) (∀ Y) (XεI0∧YεI0⊃SUCC X+Y=SUCC (X+Y))